Section 4.1 Absolute Extrema (Minimum Homework: 1, 3, 5, 7, 9, 11, $13,17,19,23,25)$

We cover the concept of the absolute maximum and absolute minimum in section 4.1.

Given a graph of a continuous function over a closed interval: (We only consider graphs that are bound on each side when we find absolute maximum and absolute minimum values.)

- Absolute maximum: y-coordinate of the highest point
- Absolute minimum: y-coordinate of the lowest point.

The absolute maximum and absolute minimum points are marked on the graph below.
It would be proper to write the following:

- There is an absolute maximum of $y=2$, which occurs when $x=2$.
- There is an absolute minimum of $y=-2$, which occurs when $x=0$. (It would be correct to write $f(x)$ instead of y)

We need to be able to find the absolute maximum and absolute minimum of values of a function over a given interval $[a, b]$.

Here are the steps:

1) Find $f^{\prime}(x)$
2) Solve $f^{\prime}(x)=0$
3) Create a table with two columns.

x Left column	$f(x)$ Right column
a	
b	
Any answer from step 2 in the interval [a,b]	
There will be as many extra rows as answers to part 2 in the given interval [a,b]	

4) Substitute the values in the left column into the ORIGINAL function to complete the right column.

x Left column	$f(x)$ Right column
a	$f(a)$
b	$f(b)$
Any answer from step 2 in the interval [a,b]	$f(\#)$

5) Write Answer

Absolute maximum - the largest value in the right column Absolute minimum - smallest value in the right column.

Example: $f(x)=x^{3}-3 x^{2}$; $[1,4]$
Find the absolute maximum and absolute minimum of the function under the given interval.

1) Find $f^{\prime}(x)$
$f^{\prime}(x)=3 x^{2}-6 x$
2) Solve $f^{\prime}(x)=0$
$3 x^{2}-6 x=0$
$3 x(x-2)=0$
$\begin{array}{ll}3 x=0 & x-2=0 \\ x=0 & x=2\end{array}$
3) Create a table with two columns.

Only include
1,2 and 4 in the left column of the table. Do not include 0 as it is not betwe

x	$f(x)$
1	
2	
4	

4)

x	$f(x)$
1	$f(1)=(1)^{3}-3(1)^{2}=-2$
2	$f(2)=(2)^{3}-3(2)^{2}=-4$
4	$f(4)=(4)^{3}-3(4)^{2}=16$

5) Write Answer
absolute maximum of $\mathrm{y}=16$, which occurs when $\mathrm{x}=4$. absolute minimum of $y=-4$, which occurs when $x=2$.
(Minimum Homework: 1, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25)
\#1-9: Find the absolute maximum and absolute minimum
6)

2)

Absolute maximum of $y=5$, which occurs when $x=1$.
Absolute minimum of $y=1$, which occurs when $x=3$.
(Minimum Homework: 1, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25)
3)

4)

Absolute maximum of $y=5$, which occurs when $x=2$.
Absolute minimum of $y=-4$, which occurs when $x=5$.
(Minimum Homework: $1,3,5,7,9,11,13,17,19,23,25)$
5)

6)

Absolute maximum of $y=10$, which occurs when $x=-2,2$.
Absolute minimum of $y=-6$, which occurs when $x=0$.
(Minimum Homework: 1, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25)
7)

8)

Absolute maximum of $y=8$, which occurs when $x=2$.
Absolute minimum of $y=-1$, which occurs when $x=-1$.
(Minimum Homework: 1, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25)
9)

(Minimum Homework: 1, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25)
\#10-27: Find the absolute maximum and absolute minimum of the function under the given interval.
11) $f(x)=x^{2}-6 x+4 ; \quad[-5,5]$
10) $f(x)=x^{2}-2 x+5 ;[-3,3]$

1) Find $f^{\prime}(x)$
2) Solve $f^{\prime}(x)=0$
3) Create a table with two columns.

x	$f(x)$

4)

x	$f(x)$

5) Write Answer

Absolute maximum of $y=20$, which occurs when $x=-3$.
Absolute minimum of $y=4$, which occurs when $x=1$.
13) $f(x)=x^{3}+6 x^{2} ;[-2,1]$
12) $f(x)=x^{3}-6 x^{2} ;[-2,2]$

1) Find $f^{\prime}(x)$
2) Solve $f^{\prime}(x)=0$
3) Create a table with two columns.

x	$f(x)$

4)

x	$f(x)$

5) Write Answer

Absolute maximum of $y=0$, which occurs when $x=0$.
Absolute minimum of $y=-32$, which occurs when $x=-2$.
14) $f(x)=x^{3}-3 x^{2} ; \quad[-1,3]$
15) $f(x)=x^{3}-$
$3 x^{2}+2 ; \quad[-1,5]$
17) $f(x)=3 x^{4}-4 x^{3} ;[-2,3]$
16) $f(x)=x^{4}-x^{3}+5 ;[-2,2]$

1) Find $f^{\prime}(x)$
2) Solve $f^{\prime}(x)=0$
3) Create a table with two columns.

x	$f(x)$

4)

x	$f(x)$

5) Write Answer

Absolute maximum of $y=29$, which occurs when $x=-2$. Absolute minimum of $y=\frac{1253}{256}$, which occurs when $x=\frac{3}{4}$.
19) $f(x)=\left(x^{2}-16\right)^{3} ;[-2,2]$
18) $f(x)=\left(x^{2}-9\right)^{4} ;[0,2]$

1) Find $f^{\prime}(x)$
2) Solve $f^{\prime}(x)=0$
3) Create a table with two columns.

x	$f(x)$

4)

x	$f(x)$

5) Write Answer

Absolute maximum of $y=6561$, which occurs when $x=0$.
Absolute minimum of $y=625$, which occurs when $x=2$.
20) $f(x)=\sqrt[3]{x} ;[-1,2]$
21) $f(x)=\sqrt[5]{x} ; \quad[-3,2]$
23) $f(x)=2 x e^{x} ;[0,3]$
22) $f(x)=x e^{x}$; $[-3,3]$

1) Find $f^{\prime}(x)$
2) Solve $f^{\prime}(x)=0$
3) Create a table with two columns.

x	$f(x)$

4)

x	$f(x)$

5) Write Answer

Absolute maximum of $y=3 e^{3}$, which occurs when $x=3$.
Absolute minimum of $y=-1 / e$, which occurs when $x=-1$.
25) $f(x)=e^{x^{2}} ;[-2,1]$
24) $f(x)=e^{3 x^{2}} ;[-1,1]$

1) Find $f^{\prime}(x)$
2) Solve $f^{\prime}(x)=0$
3) Create a table with two columns.

x	$f(x)$

4)

x	$f(x)$

5) Write Answer

Absolute maximum of $y=e^{3}$, which occurs when $x=-1,1$.
Absolute minimum of $y=1$, which occurs when $x=0$.
26) $f(x)=x^{3} e^{x} ;[-3,1]$
27) $f(x)=x^{2} e^{x} ;[-3,1]$

